

Space Communications and Navigation Overview Explorer Workshop July 13, 2010

SCaN Networks

Manned Missions

Sub-Orbital Missions

Earth Science Missions

Lunar Missions

DSN

NEN/NASA

SN

Alaska

Partner Station: Gilmore Creek, Alaska

USN Alaska Poker Flat & North Pole, Alaska

Madrid Complex Madrid, Spain

Kongsberg Satellite Services (KSAT) Svalbard, Norway

Space Science Missions

Swedish Space Corp. (SSC)

Kiruna, Sweden

German **Space** ency (DLR) Weilheim, Germany

Goldstone Complex Fort Irwin, California

USN Hawaii South Point, Hawaii

White Sands Complex White Sands, New Mexico

White Sands Ground Terminal, White Sands, New Mexico

Guam Remote Ground Terminal

USN Australia Dongara, Australia

Canberra Complex Canberra. Australia

Merritt Island Launch Annex Merritt Island, Florida

University of Chile Santiago, Chile

Station Wallops, Virginia

McMurdo Ground Station McMurdo Base, Antarctica

Satellite Applications Center

Hartebeesthoek, Africa

SCaN Networks- (cont'd)

Space Network

Near Earth Network

DESCRIPTION

Deep Space Network

- Global orbital satellite communications fleet
- Optimized for *continuous*, high data rate communications
- Critical for human spaceflight safety & critical event coverage

- World-wide network of stations
- Evolved from fully NASAowned to portfolio of owned assets and procured commercial services (greater than 50%)
- Surge capability through partnerships (e.g., NOAA)
- Optimized for *cost-effective*, high data rate services

- Three station global network of large-scale antennas
- Focused on detecting and differentiating faint signals from stellar noise
- Optimized for data capture from deep space distances orders of magnitude above near Earth

SAMPLE MISSIONS

Space Shuttle
International Space Station
Hubble Space Telescope

Aqua, Aura Lunar Recon. Orbiter QuikSCat

Mars Rovers
Cassini

Spitzer Space Telescope

NASA Telecommunications Policy

- NASA Policy Directive 8074.1, Management and Utilization of NASA's Space Communication and Navigation Infrastructure, states NASA Mission Directorates shall:
 - Use SCaN networks to meet their communication and navigation requirements for human and robotic space missions
 - Where appropriate and cost-effective for the Agency, MDs, in coordination with the SCaN Program Office, may use pre-existing infrastructure external to NASA for this purpose, as long as no new facilities are constructed using NASA funds
 - Not design or develop space C&N infrastructures independent of SCaN NASA is planning on transitioning to Ka-band in the future due to congestion in other bands
- NASA is planning on transitioning to Ka-band in the future due to congestion in other bands
 - SMD decision to do so starting with missions launching in 2015
 - Thus the AO specifies the use of Ka-band for science telemetry, unless the bandwidth used for science data downlink conforms to SFCG Recommendation 23-1 (<12 MHz bandwidth in deep space, <8 MHz at Mars)
 - In preparation for the retirement of the 70m dishes, SMD has decided on a single 34m policy (see AO for details)

The Deep Space Network

Comprises three major tracking sites around the globe to provide continuous communication and navigation support for the world's deep space

ITT for JPL

Madrid Operated by **INSA for INTA**

Operated by Raytheon for CSIRO

DSN Sites

DSN Configuration Today

DSN Configuration 2016

DSN Configuration 2025

鳌

34m BWG 34m BWG

34m BWG

34m BWG

Madrid

34m BWG

34m BWG

34m BWG

34m BWG

34m BWG

All systems to be upgraded to have:

↑ X

↓ X/Ka

S-band will be retained for legacy missions

Canberra

34m BWG

34m BWG

34m BWG

34m BWG

34m BWG

19

Space Network (SN) Overview

TDRSS Ground Segment(White Sands Complex)

White Sands Ground Terminal (WSGT) 19m antennas

- The Space Network Project operates two functionally identical, geographically separated ground terminals at the White Sands Test Facility
- The White Sands Complex has five Space to Ground Link Terminals (SGLT)
- Remotely controlled ground unit at Guam and Western Australia

Near Earth Network Overview

Earth Science Missions

Space Science Missions

Shuttle Launch and Landing

Sub-Orbital Missions

Lunar Missions

Alaska Satellite Facility Fairbanks, Alaska

Partner Station: NOAA CDA Station Gilmore Creek, Alaska

USN Alaska (1) Poker Flat, Alaska

USN Alaska (2)

Kongsberg Satellite Services

Swedish Space Corp. (SSC)

White Sands Complex White Sands, New Mexico

USN Hawaii Station South Point, Hawaii

Launch Annex

Wallops, Virginia

University of Chile Santiago, Chile

McMurdo Ground Station McMurdo Base, Antarctica

USN Australia Dongara, Australia

Satellite Applications Center Hartebeesthoek, Africa

Commercial Partner

Merritt Island Merritt Island, Florida

SCaN Customer Commitment Offices

- JPL/DSN Commitments Future Planning Office
 - Deep Space Network mission design, proposal support, service agreements and compatibility testing
 - http://deepspace.jpl.nasa.gov/advmiss
- GSFC/Network Integration Management Office (NIMO)
 - Space Network and Near Earth Network mission design,
 proposal support, service agreements and compatibility testing
 - http://scp.gsfc.nasa.gov/nimo

SCaN Points of Contact

- SCaN Program Office/NASA HQ
 - Margaret Caulfield/SCaN Mission Commitment Manager
 - Margaret.I.Caulfield@nasa.gov
 - (202) 358-3971
- JPL/DSN Commitments Future Planning Office
 - Stefan Waldherr/Commitments Engineer
 - Stefan. Waldherr@jpl.nasa.gov
 - (818) 354-3416
- GSFC/Network Integration Management Office (NIMO)
 - Scott Greatorex/Chief, NIMO
 - Scott.A.Greatorex@nasa.gov
 - (301) 286-6354